

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

Circulating Plasma cells (CPCs) in multiple myeloma (MM)

Mechanisms explaining PCs trafficking through peripheral blood (PB) dissemination: immunophyenotype.

- ✓ The mechanisms underlying the migration of PCs from the bone marrow (BM) to the circulation and extramedullary (EM) spread through PB dissemination remained unclear.
- ✓ Circulating PCs displayed overlapping immunophenotypic with BM tumor PCs, but there are minor but consistent differences between MM cells in the PB and BM that could indicate hallmarks associated with cell translocation and disease dissemination.
- ✓ A more immature and less proliferative immunophenotype was displayed on circulating PCs.
- \checkmark Circulating PCs displayed lower expression of integrin and adhesion molecules which potentially enhanced its capacity to exit into the PB.
- \checkmark The expression of some adhesion-related molecules (CD44 and galectin 1) and the pathway involved in epithelial–mesenchymal transition (EMT) were significantly upregulated in Circulating PCs compared to BM PCs.

CPCs in MM patients: immunophenotypic profile

Mechanisms explaining PCs trafficking through peripheral blood (PB) dissemination: genomic.

- ✓ PCs with distinct genomic features are more prone to spread the disease.
- $\checkmark\,$ Some data indicated that the Circulating PCs population represented a more genetically abnormal subclone than the BM clonal PCs .
- ✓ An appreciable number of mutations that were identified in EM clones although absent in BM clones were identified in Circulating PCs.
- \checkmark Circulating PCs had considerably increased levels of altered genes and pathways associated with hypoxia, inflammation, tumor migration, invasiveness, and metastasis, suggesting that the hypoxic and inflammatory microenvironment in BM niches would force their migration into the PB and invasion of other niches.

Leukemia (2020) 34:589-603 https://doi.org/10.1038/s41375-019-0588-4

ARTICLE

Multiple myeloma gammopathies

Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination

Juan-Jose Garcés ¹ · Michal Simicek^{2,3,4} · Marco Vicari⁵ · Lucie Brozova⁶ · Leire Burgos¹ · Renata Bezdekova⁷ · Diego Alignani¹ · Maria-Jose Calasanz¹ · Katerina Growkova^{2,3,4} · Ibai Goicoechea¹ · Xabier Agirre¹ · Ludek Pour⁷ · Felipe Prosper ¹ · Rafael Rios⁸ · Joaquin Martinez-Lopez⁹ · Pamela Millacoy¹⁰ · Luis Palomera¹¹ · Rafael Del Orbe ¹² · Albert Perez-Montaña¹³ · Sonia Garate¹ · Laura Blanco¹ · Marta Lasa¹ · Patricia Maiso¹ · Juan Flores-Montero¹⁴ · Luzalba Sanoja-Flores¹⁴ · Zuzana Chyra^{2,6} · Alexander Vdovin^{2,3,4} · Tereza Sevcikova^{2,4} · Tomas Jelinek^{2,3,4} · Cirino Botta ¹⁵ · Halima El Omri¹⁶ · Jonathan Keats ¹⁷ · Alberto Orfao¹⁴ · Roman Hajek^{2,3} · Jesus F. San-Miguel¹ · Bruno Paiva¹

CPCs in MM patients: molecular hallmark

Bi-clustering heatmap with differentially expressed genes (n = 259).

Red and green colors differentiate Circulating tumor cells (CTCs) and BM clonal PCs, respectively; blue–red gradient shows the expression level for each gene from low to high (scaled).

CPCs in MM patients: Genes differentially expressed in CPCs are associated with poor prognosis

CPCs in MM patients: implication for plasma cell leukemia definition

Plasma Cell Disorders

Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition

Miquel Granell,¹ Xavier Calvo,^{2,6} Antoni Garcia-Guiñón,³ Lourdes Escoda,⁴ Eugènia Abella,⁵ Clara M^a Martínez,¹ Montserrat Teixidó,³ M^a Teresa Gimenez,⁴ Alicia Senín,⁵ Patricia Sanz,¹ Desirée Campoy,³ Ana Vicent,⁴ Leonor Arenillas,⁶ Laura Rosiñol,² Jorge Sierra,¹ Joan Bladé² and Carlos Fernández de Larrea,² on behalf of GEMMAC (Grup per l'estudi del mieloma i l'amiloïdosi de Catalunya)

¹Department of Haematology, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau and Josep Carreras Leukemia Research Institutes, Universitat Autônoma de Barcelona; ²Amyloidosis and Myeloma Unit, Department of Haematology, Hospital Clínic and IDIBAPS, Universitat de Barcelona; ³Department of Haematology, Hospital Universitari Arnau de Vilanova, Universitat de Lleida; ⁴Department of Haematology, Hospital Joan XXIII, Universitat Rovira i Virgili, Tarragona; ³Department of Haematology, Hospital Joan XXIII, Universitat Autònoma de Barcelona, and ⁶Laboratory of Cytology. Department of Pathology, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona, Spain ARTICLE

ABSTRACT

he presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulat-

Haematologica 2017 Volume 102(6):1099-1104

CPCs in MM patients: implication for plasma cell leukemia definition

Figure 2. Overall survival according to the circulating plasma cells (PCs) in patients with multiple myeloma and plasma cell leukemia (PCL) treated with novel drugs upfront (P<0.001).

As highlighted in the last consensus by IMWG,³ the diagnosis of PCL has been classically done on the basis of the presence of >20% circulating PCs and/or an absolute count >2 × 10⁹/L PCs. However, lower peripheral blood PC counts, as showed in our study (that is, $\geq 5\%$ peripheral blood plasma cells), should be considered as a diagnostic criteria of PCL ("PCL-like" myeloma or early PCL), due to the independent and strong prognostic impact.

In conclusion, the presence of $\geq 5\%$ circulating PCs by conventional cytology easily identifies a group of patients with myeloma with a prognosis as poor as that of PCL, suggesting that the <u>diagnosis of PCL should be revisited</u>. If confirmed in other series, especially in prospective studies of uniformly treated patients, such patients may benefit from a distinct and more intensified therapeutic approach. Blood Cancer Journal

www.nature.com/bcj

ARTICLE OPEN

Check for updates

Primary plasma cell leukemia: consensus definition by the International Myeloma Working Group according to peripheral blood plasma cell percentage

Carlos Fernández de Larrea ^{1™}, Robert Kyle², Laura Rosiñol ^{1™}, Bruno Paiva ^{1™}, Monika Engelhardt ^{1™}, Saad Usmani ^{1™}, Jo Caers ^{1™}, Gista Ganrea Coin³, Suzanne Lentzch ^{1™}, Saad Usmani ^{1™}, Laurent Garderet¹¹, Philippe Moreau¹², Pieter Sonneveld ^{1™}, Ashraf Badros¹⁴, Gösta Gahrton¹⁵, Hartmut Goldschmidt ^{1™}, Sascha Tuchman ^{1™}, Hermann Einsele ^{1™}, Brian Durie¹⁹, Baldeep Wirk ^{1™}, Pellegrino Musto²¹, Patrick Hayden²², Martin Kaiser ²³, Jesús San Miguel ³³, Joan Bladé¹, S. Vincent Rajkumar ^{1™} and Maria Victoria Mateos ^{1™}

© The Author(s) 2021

Consensus recommendation

Primary PCL is defined by the presence of 5% or more circulating plasma cells in peripheral blood smears. In patients otherwise diagnosed with symptomatic MM. Careful examination of peripheral blood by conventional microscopy should be done in all patients with MM. A minimum of 100–200 nucleated cells per smear should be systematically analyzed by an experienced pathologist/hematologist. Patients with this new definition should not be excluded from clinical trials.

More Than 2% of Circulating Tumor original Plasma Cells Defines Plasma Cell Leukemia–Like **Multiple Myeloma**

Tomas Jelinek, MD, PhD¹; Renata Bezdekova, PhD²; David Zihala, PhD¹; Tereza Sevcikova. PhD^{1,3}: Anjana Anilkumar Sithara. MSc^{1,3}: Lenka Pospisilova, MSc⁴; Sabina Sevcikova, PhD⁵; Petra Polackova, MSc²; Martin Stork, MD, PhD⁶; Zdenka Knechtova, MCs⁶; Ondrei Venglar, MSc³; Veronika Kapustova, MSc¹; Tereza Popkova, MD¹; Ludmila Muronova, MD¹; Zuzana Chyra, PhD¹; Matous Hrdinka, PhD¹; Michal Simicek, PhD¹; Juan-Jose Garcés, PhD⁷; Noemi Puig, MD, PhD⁸; Maria-Teresa Cedena, MD, PhD⁹; ts Artur Jurczyszyn, MD, PhD¹⁰; Jorge J. Castillo, MD, PhD¹¹; Miroslav Penka, MD²; Jakub Radocha, MD, PhD¹²; Maria Victoria Mateos, MD⁸; Jesús F. San-Miguel, MD, PhD⁷; Bruno Paiva, PhD⁷; Ludek Pour, MD, PhD⁵; Lucie Rihova, PhD²; and Roman Hajek, MD, PhD¹

METHODS We assessed the levels of CTCs by multiparameter flow cytometry in 395 patients with newly diagnosed transplant-ineligible MM to establish a cutoff for CTCs that identifies the patients with ultra-high-risk PCL-like MM. We tested the cutoff on 185 transplant-eligible patients with MM and further validated on an independent cohort of 280 transplant-ineligible patients treated in the GEM-CLARIDEX trial. The largest published real-world cohort of patients with primary PCL was used for comparison of survival. Finally, we challenged the current 5% threshold for primary PCL diagnosis.

Journal of Clinical Oncology*

re

0

© 2022 by American Society of Clinical Oncology

CPCs in MM patients: definition of plasma cell leukemia-like MM by flow cytometry

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

How We Manage Newly Diagnosed Multiple Myeloma With Circulating Tumor Cells Nets W.C.J. van de Donk, MD, PhD¹²

Journal of Clinical Oncology*

© 2022 by American Society of Clinical Oncology

ep

õ

ITTS

Identification of High-Risk Multiple Identification of High-Risk Multiple Myeloma With a Plasma Cell Leukemia-Like Transcriptomic Profile

Davine Hofste op Bruinink, MD, MSc^{1,2}; Rowan Kuiper, PhD^{1,3}; Mark van Duin, PhD¹; Tom Cupedo, PhD¹; Vincent H.J. van der Velden, PhD²; Remco Hoogenboezerm, MSc¹; Bronno van der Holt, PhD⁶; H. Berna Beverloo, PhD⁶; Erik T. Valent, PhD³; Michael Vermeulen, BSc¹; Francesca Gay, MD, PhD⁶; Annemiek Broijl, MD, PhD¹; Hervé Avet-Loiseau, MD, PhD⁷; Nikhil C. Mushi, MD, PhD⁶; Pellegrino Musto, MD²; Philippe Moreau, MD¹⁰; Sonja Zweegman, MD, PhD¹¹; Niels W.C.J. van de Donk, MD, PhD¹¹; and Pieter Sonneveld, MD, PhD¹

TABLE 3.	Multivariate Analyses	f PCL-Like Status in Combination with Conventional Prognostic Factors for	PFS and OS in NDMM

	FFa		03	
Prognostic Factor	HR (95% CI)	Р	HR (95% CI)	Ρ
PCL-like classifier: PCL-like MM v i-MM	1.64 (1.30 to 2.07)	< .0001	1.89 (1.42 to 2.50)	< .0001
R-ISS				
R-ISS II v R-ISS I	1.63 (1.33 to 2.00)	< .0001	2.28 (1.64 to 3.17)	< .0001
R-ISS III v R-ISS I	2.67 (2.03 to 3.52)	< .0001	5.50 (3.75 to 8.04)	< .0001
Age: \leq 65 years $v >$ 65 years	0.70 (0.55 to 0.91)	.007	0.44 (0.30 to 0.65)	< .0001

	PFS		OS	
Prognostic Factor	HR (95% CI)	Р	HR (95% CI)	P
PCL-like classifier: PCL-like MM v i-MM	1.78 (1.51 to 2.11)	< .0001	1.86 (1.53 to 2.26)	< .0001
ISS				
ISS II v ISS I	1.49 (1.30 to 1.70)	< .0001	1.64 (1.36 to 1.97)	< .0001
ISS III V ISS I	1.83 (1.59 to 2.11)	< .0001	2.65 (2.20 to 3.18)	< .0001
Age: \leq 65 years $v >$ 65 years	0.83 (0.71 to 0.97)	.02	0.73 (0.59 to 0.90)	.003

	PFS		05	
Prognostic Factor	HR (95% CI)	P	HR (95% CI)	P
PCL-like classifier: PCL-like MM v i-MM	1.64 (1.33 to 2.01)	< .0001	1.89 (1.48 to 2.41)	< .0001
FISH: high-risk v standard-risk	1.37 (1.18 to 1.59)	< .0001	1.67 (1.39 to 2.01)	< .0001
Age: \leq 65 years $v >$ 65 years	0.72 (0.59 to 0.87)	.0008	0.55 (0.42 to 0.71)	< .0001

	PFS		0\$	
Prognostic Factor	HR (95% CI)	P	HR (95% CI)	Ρ
PCL-like classifier: PCL-like MM v i-MM	1.49 (1.26 to 1.77)	< .0001	1.52 (1.25 to 1.85)	< .0001
SKY92 classifier: high-risk v standard-risk	2.10 (1.85 to 2.38)	< .0001	2.79 (2.40 to 3.24)	< .0001
Age: \leq 65 years ν > 65 years	0.76 (0.65 to 0.89)	.0005	0.65 (0.53 to 0.80)	< .0001

	PFS		05	
Prognostic Factor	HR (95% CI)	P	HR (95% CI)	P
PCL-like classifier: PCL-like MM v i-MM	1.63 (1.38 to 1.93)	< .0001	1.62 (1.33 to 1.98)	< .0001
UAMS70 classifier: high-risk v standard-risk	2.17 (1.87 to 2.53)	< .0001	3.05 (2.57 to 3.63)	< .0001
Age: \leq 65 years $v >$ 65 years	0.75 (0.65 to 0.88)	.0003	0.65 (0.53 to 0.80)	< .0001

Abbreviations: FISH, fluorescence in situ hybridization; HR, hazard ratio; i-MM, intramedullary multiple myeloma; ISS, International Staging System; NDMM, newly diagnosed multiple myeloma; OS, overall survival; PCL-like MM, plasma cell leukemia-like multiple myeloma; PFS, progression-free survival; R-ISS, Revised International Staging System.

CPCs in MM patients: the detection efficiency and sensitivity of different method of liquid biopsy

Method	Detection efficiency and sensitivity	Method	Detection efficiency and sensitivity
Wright–Giemsa-stained blood smears	CMMCs were detected in approximately 14.1%–20.8% of patients	Epic platform	Sensitivity: one MM cell in 3*10 ⁶ WBCs
5	with NDMM at diagnosis	CD138-coated microfluidic device (Herringbone-shaped)	Sensitivity: < 10 CMMCs/mL using 1-mL sample
Slide-based immunofluorescence	Sensitivity: 0.01% CMMCs were detected in 19.4%, 25%, and 80% of patients with	CD138-coated microfluidic device (Sinusoidal-shaped)	CMMCs were detected in 78% of patients with MGUS and 100% of those with SMM and MM
MFC (2-color: CD45 and CD38)	Sensitivity: 0.01% CMMCs were detected in 20%, 40%, 73%–83.6%, and 38.6% of patients with MCIIS SMM. NDMM at diagonalis and MM before	ASO-PCR of IGH rearrangements	Sensitivity: 0.001% CMMCs were detected in 13/16, 6/8, and 13/15 of patients with MGUS, SMM, and active MM, respectively
	ASCT, respectively	Real-time quantitative PCR of IGH rearrangements	Sensitivity: approximately 0.01%–0.001%
MFC (5-color: CD38, CD138, CD45, CD19, and CD56)	Sensitivity: 0.01% CMMCs were detected in approximately 69.2%-74.1%, 60.5%, 0%,		NDMM at diagnosis, NDMM before HDT for ASCT, NDMM 3 months after HDT, and RRMM at the time of relapse, respectively
	and 14% of patients with NDMM at diagnosis, in PR, in CR, and at relapse, respectively	LymphoSIGHT assay of IGH and IGK rearrangements	Sensitivity: well below 0.0001% 1. CMMCs were detected in 78% of patients with MM using DNA
MFC (6-color: CD38, CD138, CD45, CD19, cytoplasmic $\kappa_{\rm r}$ and λ light chains)	Sensitivity: 20 cells/150,000 events (0.013%) CMMCs were detected in 24%, approximately 51.4%–67%, approxi- mately 19.3%–19.4%, and 62/145 of patients with SMM, NDMM before therapy, MM before ASCT, and MM at relapse, respectively		assay and 96% of patients with MM using DNA and RNA assays 2. ctDNA was detected in 83% of patients with MM using DNA assay 3. Tumor clones were detected in 98% of patients with MM using
MFC (7-color: CD38, CD138, CD45, CD19, CD56, cytoplasmic $\kappa_{\rm r}$ and λ light chains)	Sensitivity: 0.01% CMMCs were detected in 60.1% and 18.8% of patients with NDMM at diagnosis and MM before ASCT, respectively	Ion Torrent of IGH rearrangements	the combination of CMMCs and ctDNA Sensitivity: 0.001% MM clones in cfDNA were detected in 100% of patients with MM
2 tubes/MFC (7-color: CD38, CD138, CD45, CD19, CD56, cytoplasmic $\kappa,$ and λ light chains)	Sensitivity: approximately 0.004%–0.0001% CMMCs were detected in 119/191 (approximately 67%) of patients with NDMM at diagnosis	NGS of IGK and IGL rearrangements	at relapse MM clones in cfDNA were detected in 71.4% of patients with NDMM/MM at relapse and 22.2% of samples from MM who
Magnetic cell sorting (MACS) (CD38 or CD138) combined with MFC (5-color: CD38, CD138, CD45, CD19, and CD56)	Sensitivity: 0.001% CMMCs were detected in 87.2%, approximately 83.7%–86%,	NCS of ICH ICK and ICL correspondents	achieved CR. All ctDNA-detectable CR samples were from a patient with nonsecretory MM CMMC users datasted in 71% of patients with MM at baseline
	nosis, in PR, in CR, and at relapse, respectively	NGS OF IGH, IGN, and IGL rearrangements	MM clones in cfDNA were detected in 100% of patients with MM
MACS (CD138) combined with MFC (7-color: CD45, CD19, CD81, CD27, CD117, CD56, and CD200)	CMMCs were detected in 83.3% and 9.9% of patients with NDMM/ MM at relapse and MM who achieved CR, respectively		at baseline. MM clones in CMMCs and/or cfDNA were detected in 91% and 41% of patients with MM with stable or progressive disease and MM with PR or better, respectively.
NGF (2-tube/8-color)	Sensitivity: 0.0001% CMMCs were detected in approximately 92%–100%, 100%, 59%, 25%, 18%, 17%, and 100% of patients with NDMM at diagnosis, SMM, MGUS, macro focal MM, solitary plasmacytoma, MM who achieved CR/sCR, and relapsed/refractory multiple myeloma (RRMM), respectively	ULP-WGS	Lower limit: TF ≥ 3% In NDMWRRMM, ≥ 3% TF was detected in 76% cfDNA samples and 100% CMMC samples; ≥ 10% TF was detected in approximately 24% – 32% cfDNA samples and in 31% CMMC samples In MGUS/SMM/NDMMRRMM, ≥ 3% TF was detected in 75% cfDNA samples and 96% CMMC samples: > 10% TF was detected in 17%
CellSearch platform	CMMCs were detected in 98%, 93.7%, and approximately 56%–86% of patients with NDMM at baseline, intermediate/high-risk SMM, and MGUS, respectively	LP-WGS	cfDNA samples and 21% CMMC samples Lower limit: TF \geq 5% \geq 5% TF was detected in 62% of cfDNA samples from patients with RRMM, in 75% of cfDNA samples from patients with NDMM, and in none of cfDNA samples from patients with MM post-treatment

CPCs in MM patients: prognostic value

Sample	Detection time	Method	Cut-off	Prognostic value
NDMM	Before ASCT	MFC (6-color)	Presence of CMMC	 A prognostic factor for PFS and OS independent of post-transplant sCR A prognostic factor for post-trans- plant response status
NDMM	At diagnosis, before ASCT and day 100 post- transplant	MFC (6-color)	 Presence of CMMC Dynamics of CMMCs at diagnosis and before ASCT (-/-), (+/-), (+/+), (-/+) 	 CMMC (+/+) or (-/+) were fac- tors for lower incidence of pre-transplant ≥VGPR and post-transplant sCR CMMC (+/+) or (-/+) was an independent factor for inferior PFS and OS Patients with CMMCs at day 100 post-transplant had inferior PFS and OS
MM with EM	/	Combination of MACS and MFC (6-color)	Presence of CMMC	The presence of CMMCs in patients with EM disease had worse OS
NDMM	At diagnosis	MFC (7-color)	≥0.10% CMMCs/150,000 events	A prognostic factor for inferior PFS and OS independent of R-ISS stage and age
NDMM	At diagnosis	MFC (2-tube/7-color)	≥0.038% CMMCs	 An independent prognostic factor for inferior PFS and OS A factor for higher incidence of ≥VGPR and ≥PR
Transplant-eligible NDMM At diagnosis	At diagnosis	MFC (2-tube/7-color)	≥0.07% CMMCs (≥5 cells/µL)	 A factor for lower incidences of MRD negativity and ≥CR at premaintenance A factor for inferior PFS and OS independent of ISS, cytogenetics, and LDH level A similar prognostic value between the cut-of value and continuous variable
NDMM	Before ASCT	MFC (7-color)	Presence of CMMCs	 A factor for lower incidence of VGPR or better A prognostic factor for inferior PFS, independent of ISS stage, cytogenetics, and maintenance therapy The presence of CMMC enhanced the stratification of VGPR or better
MGUS, SMM, MM	At diagnosis	MFC (8-color)	>0.0035% CMMCs	An independent prognostic factor of inferior PFS and OS
MGUS, SMM, MM	At diagnosis	NGF	≥0.058 CMMCs/µL (for MGUS) ≥0.1 CMMCs/µL (for SMM and MM)	 A factor for MGUS of higher incidence of progression in 30 months A factor for SMM of higher incidence of progression to MM in 2 years A factor for MM of inferior PFS and OS independent of CR status or MRD status

CPCs in MM patients: prognostic value

Sample	Detection time	Method	Cut-off	Prognostic value
Treated MM	After therapy	NGF	 Presence of CMMC Kinetics of CMMCs 	 An independent prognostic factor for inferior PFS The presence of CMMC enhanced the stratification of CR/sCR Patients with CMMC-/-or+/-in sequential monitoring showed better PFS than those with CMMC+/+or-/+inde- pendent of sIF status
NDMM	At diagnosis	NGF	≥0.01% CMMCs (0.6 CMMCs/mL)	 A factor for inferior PFS independ- ent of ISS stage, LDH, and cytogenet- ics A prognostic factor for inferior PFS independent of CR status and MRD status
NDMM	At remission	CellSearch platform	≥100 CMMCs/4 mL of blood	A prognostic factor for inferior PFS and OS
NDMM	At diagnosis and 3 months after HDT for ASCT	ASO-qPCR of IgH rearrangement	Presence of CMMC	 At diagnosis: a prognostic factor for inferior EFS Three months after HDT for ASCT: a prognostic factor for inferior EFS and OS

invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC)

L. Sanoja-Flores¹², J. Flores-Monteno¹², J. J. Garcés<mark>o², B. Paiva³, N. Puig⁴, A. García-Mateo⁵, O. García-Sánchez⁴, A. Corral-Mateoci⁵, L. Burgos⁵, E. Bianco¹⁵, J. Hernández-Matrin⁵, R. Pontes⁶, M. Diez-Campelo⁶, P. Milacoy⁷, P. Rodríguez-Otero³, F. Prosper³, J. Merino³, M. B. Vichales⁴, R. García-Sanz⁴, A. Romero⁸, L. Palomera⁹, R. Rios-Tamayo¹⁰, M. Pérez-Andel^{6,15}, J. F. Bianco¹¹, M. Gorzila², J. J. M. von Dongen¹³, B. Durie¹³, M. V. Mateos⁴, J. San-Miguel³ and A. Orlao¹², on behalf of the EuroFlow consortium</mark>

Frequency and distribution of circulating tumor PC in PB of MGUS and MM patients classified into distinct risk-groups and clinical stages, respectively

Impact of PB CTPC counts at diagnosis on the outcome of MGUS, SMM, and MM patients

CLINICAL OBSERVATIONS, INTERVENTIONS, AND THERAPEUTIC TRIALS

Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma

Grzegorz S. Nowakowski, Thomas E. Witzig, David Dingli, Michal J. Tracz, Morie A. Gertz, Martha O. Lacy, John A. Lust, Angela Dispenzieri, Philip R. Greipp, Robert A. Kyle, and S. Vincent Rajkumar

divided into 5 groups based on the number of PCs.

Table 4. Risk stratification groups based on the circulating PCs and risk factors used in ISS

	No. patients at risk (%)	Median survival, mo
Risk factor		
B2M, more than 3.5 mg/L	190	41
Albumin level, less than 3.5 g/dL	127	28
Circulating PCs, more than 10	115	37
Risk stratification group		
Low-risk (none of the risk factors present)	56 (19)	79+
Low-intermediate risk (1 of the risk factors present)	98 (32)	48
High-intermediate risk (2 of the risk factors present)	91 (30)	32
High risk (3 risk factors present)	57 (19)	13

3-III). (B) Survival by number of circulating PCs (A, 10 or less; B, more than 10).

Citation: Blood Cancer Journal (2016) 6, e512; doi:10.1038/bcj.2016.117

ORIGINAL ARTICLE

Risk stratification in myeloma by detection of circulating plasma cells prior to autologous stem cell transplantation in the novel agent era

www.nature.com/bcj

R Chakraborty^{1,2}, E Muchtar¹, SK Kumar¹, D Jevremovic³, FK Buadi¹, D Dingli¹, A Dispenzieri¹, SR Hayman¹, WJ Hogan¹, P Kapoor¹, MQ Lacy¹, N Leung¹ and MA Gertz¹

Variable	<u></u>	Progression-fre	e survival (PFS)			Overall su	urvival (OS)	
	Univariate Hazard ratio (95% CI)	P-value	Multivariate Hazard ratio (95% Cl)	P-value	Univariate Hazard ratio (95% CI)	P-value	Multivariate Hazard ratio (95% Cl)	P-value
Age ≥65 HR FISH cytogenetics	0.87 (0.72-1.05)	0.144	NA 1.20 (0.97–1.48)	NA 0.088	1.09 (0.82–1.44)	0.538	NA 1.26 (0.86-1.81)	NA 0.231
CPCs present	2.28 (1.87-2.76)	< 0.0001	2.03 (1.64-2.50)	< 0.001	2.97 (2.25-3.88)	< 0.001	2.52 (1.78-3.55)	< 0.001
≥ VGPR at transplant	0.80 (0.67-0.95)	0.012	1.15 (0.92-1.42)	0.209	0.95 (0.72-1.24)	0.727	NA	NA
sCR post transplant	0.45 (0.37-0.55)	< 0.001	0.44 (0.34-0.55)	< 0.001	0.42 (0.30-0.59)	< 0.001	0.39 (0.25-0.61)	< 0.001
ISS stage 3	1.15 (0.94-1.41)	0.168	NA	NA	1.48 (1.08-2.01)	0.015	1.21 (0.86-1.70)	0.270
Reduced-dose melphalan	1.03 (0.78-1.32)	0.829	NA	NA	1.40 (0.96-1.99)	0.076	1.27 (0.78-1.98)	0.322

Abbreviations: CI, confidence interval; CPC, circulating plasma cells; FISH, fluorescence in situ hybridization; HR, high risk; ISS, International staging system; NA, not applicable; sCR, stringent complete response; VGPR, very good partial response. Bold values indicate statistically significance parameters.

TRANSPLANTATION

Flow cytometric detection of circulating myeloma cells before transplantation in patients with multiple myeloma: a simple risk stratification system

David Dingli, Grzegorz S. Nowakowski, Angela Dispenzieri, Martha Q. Lacy, Suzanne R. Hayman, S. Vincent Rajkumar, Philip R. Greipp, Mark R. Litzow, Dennis A. Gastineau, Thomas E. Witzig, and Morie A. Gertz

Figure 2. Kaplan-Meier plots based on the presence or absence of circulating myeloma cells detected by flow cytometry. (A) Overall survival (OS). (B) Time to progression (TTP). The presence of circulating myeloma cells is associated with an adverse outcome with respect to both OS and TTP (P = .005 and P < .001, respectively).

cytogenetics and presence of circulating myeloma cells. (A) OS. (B) TTP. Patients with normal cytogenetics and no circulating myeloma cells have a superior OS and TTP compared with patients with one or both of these parameters.

Figure 4. Kaplan-Meier plots for patients who received transplants, either in plateau phase or with chemotherapy-sensitive disease, stratified on the scoring system developed. (A) OS. (B) TTP. In this group of patients, both OS and TTP are inferior for patients with either or both risk factors.

Table 4. Overall survival and time to progression in the 3 risk groups based on cytogenetics and circulating myeloma cells

Risk group	n	OS, mo	TTP, mo
Low	134	55	21.8
Intermediate	81	48	15.4
High	31	21.5	6.5

Published in final edited form as:

50

20

40

Time (months)

60

Am J Hematol. 2020 March ; 95(3): 310-315. doi:10.1002/ajh.25709.

Enhancing the R-ISS Classification of Newly Diagnosed Multiple Myeloma by Quantifying Circulating Clonal Plasma Cells

Wilson I. Gonsalves, MD¹, Dragan Jevremovic, MD², Bharat Nandakumar, MBBS¹, Angela Dispenzieri, MD¹, Francis K. Buadi, MD¹, David Dingli, MD, PhD¹, Martha Q. Lacy, MD¹, Suzanne R. Hayman, MD¹, Prashant Kapoor, MD¹, Nelson Leung, MD^{1,3}, Amie Fonder, PA-C¹, Miriam Hobbs, DNP¹, Yi Lisa Hwa, DNP¹, Eli Muchtar¹, Rahma Warsame, MD¹, Taxiarchis V. Kourelis, MD¹, Stephen Russell, MD, PhD¹, John A. Lust, MD, PhD¹, Yi Lin, MD, PhD¹, Ronald S. Go, MD¹, Mustageem A. Siddiqui, MD¹, Robert A. Kyle, MD¹, Morie A. Gertz, MD¹, S. Vincent Rajkumar, MD¹, Shaji K. Kumar, MD¹

Circulating Tumor Cells for the Staging of Patients With Newly Diagnosed Transplant-Eligible Multiple Myeloma Juan-Jose Garcés, MSc¹; Maria-Teresa Cedena, MD²; Noemi Puig, MD, PhD³; Leire Burgos, PhD¹; Jose J. Perez, Ph Lourdes Cordon, PhD²; Juan Flores-Montero, MD, PhD³; Leire Burgos, PhD¹; Jose J. Perez, Ph Lourdes Cordon, PhD²; Juan Flores-Montero, MD, PhD³; Luzalba Sanoja-Flores, PhD²; Maria-Jose Calasanz, PhD¹ A Maria-Jesic Blanched Ribs, MD, PhD¹⁹; Juan Barding-Zhating-Zhol¹; Juan Ba

Juan-Jose Garcés, MSc¹; Maria-Teresa Cedena, MD²; Noemi Puig, MD, PhD³; Leire Burgos, PhD¹; Jose J. Perez, PhD³; Lourdes Cordon, PhD⁴; Juan Flores-Montero, MD, PhD^{5,6}; Luzalba Sanoja-Flores, PhD⁷; Maria-Jose Calasanz, PhD¹; Albert Ortiol, MD⁸; María-Jesús Blanchard, MD⁹; Rafael Rios, MD, PhD¹⁰; Jesus Martin, MD⁷; Rafael Martínez-Martinez, PhD¹¹; Joan Bargay, MD, PhD¹²; Anna Sureda, MD, PhD^{8,13}; Javier de la Rubia, MD^{4,14,15}; Miguel-Teodoro Hernandez, MD, PhD¹⁶; Paula Rodriguez-Otero, MD, PhD¹; Javier de la Cruz, MD²; Alberto Orfao, MD, PhD^{5,6}; Maria-Victoria Mateos, MD, PhD³; Joaquin Martinez-Lopez, MD^{2,17}; Juan-Jose Lahuerta, MD²; Laura Rosiñol, MD, PhD¹⁸; Joan Blade, MD, PhD¹⁸; Jesus F. San-Miguel, MD, PhD¹; and Bruno Paiva, PhD¹

CTCs for Risk Stratification of Newly Diagnosed MM

FIG 1. Treatment Schema and laboratory examinations in the PETHEMA GEM2012MENOS65 and GEM2014MAIN clinical trials. BUMEL, busulfan/ melphalan; CTCs, culating tumor cells; HDT, high-dose therapy; IRd, ixazomib, lenalidomide, and dexamethasone; MEL, melphalan; MRD, measurable residual visease: R. randomization: Rd. lenalidomide and dexamethosone: S. stratification: VRD, bortezomib, lenalidomide, and dexamethasone.

Laboratory Examinations

Assessment of CTCs in PB at diagnosis and MRD in BM aspirates collected in EDTA was performed using the EuroFlow NGF methodology.²² After counting, volumes of

Journal of Clinical Oncology*

© 2022 by American Society of Clinical Oncology

LS

of relapse with higher CTC levels (Data Supplement). Thus, 5year rates of PFS progressively worsen in cases with undetectable CTCs versus those with increasingly higher logarithmic percentages of CTCs (ie, intervals from > 0.0001% to < 0.001%, \geq 0.001% to < 0.01%, \geq 0.01% to < 0.1%, \geq 0.1% to < 1%, and \geq 0.1%): 90% (95% CI, 80 to 100) versus 80% (67 to 96), 64% (55 to 74), 53% (45 to 63), 48% (38 to 62), and 30% (15 to 59), respectively (*P* < .0001; Fig

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

Open access

Original research

А

BMJ Open Prognostic value of circulating plasma cells detected by flow cytometry in newly diagnosed multiple myeloma patients: a systematic review and metaanalysis

Xiaoyan Liu,¹ Feifei Wu,¹ Wu Ye,² Jili Deng,³ Mengmeng Zhang,¹ Congli Zhang,¹ Qingfeng Yu,¹ Li Cao,¹ Silin Gan,¹ Jie Ma ^(D)

B	Study		%
	D	HR (95% CI)	Weight
	Bertamini, L (2022)	2.11 (1.49, 2.97)	17.68
	Garcés, J. J (2022)	2.02 (1.30, 3.10)	11.14
	Wenmin Han (2021)	2.30 (1.32, 4.01)	6.81
	Qianwen Cheng (2021)	2.05 (1.10, 3.81)	5.46
PFS	Vasco-Mogorrón, M. A (2021)	1.80 (1.22, 2.66)	13.84
	Galieni, P (2021)	3.18 (1.54, 6.59)	3.98
	Gonsalves, W. I (2020)	1.61 (1.21, 2.16)	25.04
	Abe, Y (2019)	3.13 (1.78, 5.50)	6.61
	Bae, M. H (2017)	3.05 (1.59, 5.85)	4.93
	Vagnoni, D (2015)	2.63 (1.51, 5.92)	4.51
	Overall (I-squared = 0.0%, p = 0.459)	2.07 (1.79, 2.39)	100.00
	.152 1 CPC+	6.59 CPC-	

E Circulating Tumor Cell Burden as a Ready for Prime Time? **Component of Staging in Multiple Myeloma:**

Rajshekhar Chakraborty, MD1 and Suzanne Lentzsch, MD, PhD3

TABLE 1. Characteristic	s of Studies Assessing CTCs as a Prog	nostic Factor in Newly Diagnose	d Myeloma
RCTs	GEM2012MENOS65 and GEM2014MAIN (referred to as	FORTE	EMN12/H0129, CASSIOPEIA, and H0143
Treatment schema	GEM trial) $VRd \times 6 \rightarrow HDT-AHCT (MEL200 v$ $BUMEL) \rightarrow VRd \times 2 \rightarrow Rd v IRd$	First random assignment: Arm A: KRd $\times 4 \rightarrow$ HDM- AHCT \rightarrow KRd $\times 4$ Arm B: KRd $\times 12$ Arm C: KCd $\times 4 \rightarrow$ HDM- AHCT \rightarrow KCd $\times 4$ Second random assignment: KR ν R	EMN12/H0129: KRd × 4 → HDM-AHCT → KRd × 2, followed by allo-HCT or second HDM-AHCT → KR consolidation and maintenance CASSIOPEIA: Dara-VTd v VTd × 4 → HDM-AHCT → Dara-VTd v VTd × 2 → Dara v Observation H0-143: IDd × 9 → ID
Median follow-up	5 years	4.2 years	4.8 years in the pooled survival cohort ^a used for validation of the prognostic impact of PCL-like status
Methodology used for CTC detection	MFC	MFC	MFC
Sensitivity (limit of detection)	2×10^{-6} (NGF)	4 × 10 ⁻⁵	2×10^{-6} (NGF)
Proportion of newly diagnosed patients with CTCs, %	92	67	87
Correlation between CTC and BMPC burden	$\rho = 0.41 \ (P < .001)^{b}$	$r = 0.382 \ (P < .01)^{b}$	Adjusted $R^2 = 0.16 \ (P < .001)^c$
CTC cutoff for risk	≥ 0.01%	≥ 0.07%	No specific cutoff provided for prognostication

On the basis of the consistency of evidence, we are confident that the CTC burden is a negative, and independent strong, prognostic factor in newly diagnosed transplant-eligible myeloma. In our opinion, centers with access to NGF can consider quantification of CTCs at baseline for risk stratification. These findings also have important implications in the design of highrisk enrichment trials where a high CTC burden on NGF or PCL-like transcriptome can potentially be used as an inclusion criterion even in the absence of clinical PCL with >5% CTCs on morphology. However, before formal incorporation in staging and routine clinical practice, the ≥0.01% cutoff for CTC burden using NGF needs to be validated in external data sets of transplanteligible and transplant-ineligible patients receiving anti-CD38 monoclonal antibodybased frontline combination therapies.

General Session

OA-13: Increased levels of circulating tumor cells correlate with adverse clinical outcomes and distinct biological features in newly diagnosed patients with multiple myeloma

Saturday, September 30, 2023
11:55 AM – 12:05 PM EEST

Location: Trianti

Speaker(s)

IK

Ioannis V Kostopoulos, n/a

Post doctoral research fellow Section of Animal and Human Physiology, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece, Greece

IMS 20° meeting 2023: Circulating Tumor cells (CTCs) in MM patients

Methods:

- 550 NDMM pts; 210 (38%) were TE and 340 (62%) were TI.
- NGF was used for the detection of clonal cells in both BM and PB.
- To define the optimal clinical cutoff of CTCs, we performed various multivariable regression models including CTCs, ISS (or R-ISS), cytogenetic status and LDH, and selected the one with the best performance.
- The median follow-up period was 41 months (range: 5-66 months).

IMS 20° meeting 2023: Circulating Tumor cells (CTCs) in MM patients

Results:

- CTCs were detected in 493/550 (89.6%) pts with a median value of 0.01% of all nucleated cells. Increased levels of CTCs correlated with advanced ISS stage (0.002%, 0.007% and 0.037% for pts with ISS-I, ISS-II and ISS-III respectively, p< 0.0001), high risk cytogenetics (median: 0.038% vs. 0.006% in standard risk, p< 0.0001), and higher levels of b2-microglobulin and BM infiltration.
- The optimal clinical cut-off of CTCs was defined at 0.02%, stratifying pts in two different prognostic groups with high and low CTCs [median PFS: 40 months vs. not reached (NR), HR: 2.59, 95% CI:1.71-3.91, p< 0.0001].
- In the multivariable analysis the 0.02% cut-off was independent from ISS and/or cytogenetics and was clinically relevant for both TI (median PFS: 47 vs. 23 months, p< 0.0001) and TE pts (median PFS: NR in both categories, p< 0.01).

IMS 20° meeting 2023: Circulating Tumor cells (CTCs) in MM patients

Conclusions:

- The presence of CTC at a level of >0.02% confers an adverse prognostic factor for NDMM pts, irrespective of their transplant status.
- Since the liquid biopsy is a better representative of the entire tumor load than a tissue biopsy sample, the analysis of CTCs may serve as the new hallmark for the real-time evaluation of a patient's disease and immune status.

P-0.001

48

70

32 13 60

58 19

9

B 1.0

robability 0.6

0.2

0.0

At risk

-117

--- 82

48

22

6

2

- CPC -/-

--- CPC +/-

CPC +/+ or -/+

24

65

32

36

44

16

OS from transplant (months)

12

77

39

0.8

Variable	N.*	.* Progression-free survival			Overall survival				
		Univariate HR (95% CI)	P	Multivariate HR (95% CI)	Р	Univariate HR (95% CI)	Р	Multivariate HR (95% CI)	P
Age ≥65	247	0.80 (0.58-1.10)	0.178	NA	NA	0.90 (0.53-1.49)	0.902	NA	NA
High-risk cytogenetics by FISH	224	1.33 (0.89-1.93)	0.149	NA	NA	2.35 (1.31-4.04)	0.005	2.67 (1.29-5.29)	0.009
CPC kinetics	247								
CPC-/-		1 (referent)		1 (referent)		1 (referent)			
CPC+/- CPC+/+ or -/+		1.40 (0.98-1.99) 2.79 (1.87-4.11)	0.060 <0.001	1.63 (1.08-2.45) 2.88 (1.73-4.68)	0.020 <0.001	1.82 (0.99-3.35) 4.53 (2.53-8.17)	0.053 <0.001	2.68 (1.27-5.84) 5.73 (2.53-13.12)	0.009 <0.001
≥VGPR at transplant	247	0.66 (0.48-0.90)	0.009	0.68 (0.46-0.99)	0.047	1.01 (0.61-1.04)	0.973	NA	NA
ISS stage 3 at diagnosis	226	1.03 (0.72-1.44)	0.869	NA	NA	1.36 (0.80-2.26)	0.249	NA	NA
LDH>UNL at diagnosis	210	0.87 (0.54-1.34)	0.532	NA	NA	1.63 (0.86-2.90)	0.125	NA	NA
LI>1 at diagnosis	185	1.53 (1.05-2.20)	0.028	1.57 (1.07-2.27)	0.021	2.18 (1.22-3.90)	0.009	1.91 (1.03-3.54)	0.039
PI-based induction therapy	247	1.03 (0.74-1.42)	0.846	NA	NA	1.29 (0.75-2.14)	0.344	NA	NA
IMiD-based induction therapy	247	1.06 (0.78-1.44)	0.704	NA	NA	0.59 (0.35-0.97)	0.037	0.79 (0.40-1.49)	0.466
PI- and IMiD-based induction therapy	247	0.92 (0.64-1.28)	0.618	NA	NA	1.47 (0.87-2.42)	0.145	NA	NA

NA: not applicable; HR: high-risk; FISH: fluorescence in situ hybridization; CPC: circulating plasma cells; VGPR: very good partial response; sCR: stringent complete response; ISS: International Staging System; L1: Labeling Index; PI: proteasome inhibitors; IMiD: immunomodulators; LDH: lactate dehydrogenase; UNL: upper normal limit. *Indicates number of patients with available data.

() Check for

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

TO THE EDITOR:

Blood monitoring of circulating tumor plasma cells by next generation flow in multiple myeloma after therapy

Juzaha Sanoja-Roes, ¹⁴ Juan Flores-Monten, ^{1,4} Noemi Pulg, ^{1,4} Teresa Contresa-Sanfeliciano,² Robenia Pones,⁴ Abaria Corral-Mateo, ^{1,4} Onar Garcia-Sinchez, ^{1,4} Maria Diar-Campelo, ^{1,4} Robento José Fessa de Magalies, ¹ Luis Garcia-Mantin, ¹¹ José Maria Aonso-Monso,¹¹ Anzada Garcia-Mateo, ¹¹ Carlos Agalar-Franco,¹¹ Joge Labrador, ¹⁴ Abelardo Barez-Garcia, ¹⁴ Angelo Maiolino,⁹ Biono Paina,^{11,4} Jesio San Miguel,¹¹⁰ Elaire Sobral da Costa, ¹ Marco González,^{1,4} María Victoria Mateos,^{11,4} Bian Duire,¹¹ Jacques J. M. van Dongen,¹⁸ and Aberto Ofico,¹⁰ on behald of bei Bue/Flow Constrim

	Univariate ana	Multivariate analysis				
	Median PFS (mo)	P	HR	(95% CI)	Р	
Prognostic factors for entire MM series						
Age						
<65 y	28	.3	1.00	-		
≥65 y	36					
Cytogenetic profile by FISH						
Standard-risk	36	.07			a = a	
High-risk	16					
Serum IF						
Negative	41	.001	-	-	-	
Positive	18		2.4	(1.3-4.4)	.004	
BM MRD status by NGF						
Negative	46	<.0001	-	-	-	
Positive	25					
PB CTPC status by NGF						
Negative	46	<.0001	_	-	-	
Positive	9		5.1	(2.9-8.9)	<.0001	
Prognostic factors for sCR/CR cases				-	· · · · · · · · · · · · ·	
Age						
<65 y	50	.5	-	-		
≥65 y	41					
Cytogenetic profile by FISH						
Standard-risk	50	.09		_	121	
High-risk	28	1 111100				
BM MRD status by NGF						
Negative	50	<.0001	-	-		
Positive	25		6.1	(1.5-24.4)	.01	
PB CTPC status by NGF						
Negative	46	<.0001	-	-	-	
Positive	9		7.4	(3.0-18.2)	<.0001	

TAKE HOME MESSAGE AND CONCLUSIONS...

- ✓ The presence of the more than 2% of CPCs detected by flow cytometry is considered a new cut-off MM patients with plasma cell-like leukemia and ultra high-risk disease.
- ✓ The CPCs burden is a new independent adverse prognostic factor in transplant eligible MM patients.
- ✓ The cut-off of CPCs by NGF should be yet defined: ≥0.01%?, ≥0.02%?, ≥0.07%?
- ✓ The evaluation of CPCs would be incorporated in the risk stratification risk of MM patients
- ✓ The liquid biopsy would improve disease evaluation in MM patients and provide a tool for the comprehensive and real-time assessment complementary to conventional methods, promoting the development of new risk stratification systems and individual therapy options.

30-31 gennaio 2024 BOLOGNA, Royal Hotel Carlton

bjh research paper

Quantification of clonal circulating plasma cells in relapsed multiple myeloma

Wilson I. Gonsalves,¹ William G. Morice,² Vincent Rajkumar,¹ Vinay Gupta,¹ Michael M. Timm,² Angela Dispenzieri,¹ Francis K. Buadi,¹ Martha Q. Lacy,¹ Preet P. Singh,¹ Prashant Kapoor,¹ Morie A. Gertz¹ and Shaji K. Kumar¹

Fig 2. Shows the Kaplan–Meier Curve for survival from the time of peripheral blood flow cytometry analysis in all previously treated patients with actively relapsing disease based on the presence of circulating plasma cells (cPCs) based on the presence of 100 or more cPCs.

	Overall survival						
	Univariate		Multivariate				
Variable	HR (95% CI)	P-value	HR (95% CI)	<i>P</i> -valu			
≥100 clonal cPCs detected	3.32 (2.05-5.41)	<0.0001	2.67 (1.37-5.17)	0.0041			
Number of prior lines of therapy	1.15 (1.05–1.26)	0.0027	4.09 (1.56-10.14)	0.0048			
Serum creatinine	1.56 (1.23–1.88)	0.0008	1.29 (0.89–1.87)	0.1723			
β2-microglobulin	1.12 (1.07–1.16)	<0.0001	1.05 (0.97-1.12)	0.2165			
Elevated LDH (>222 u/l)	1.02 (1.01-1.03)	<0.0001	2.93 (1.67-5.08)	0.0003			
High bone marrow PC%	1.00 (0.99-1.02)	0.0785	-	-			
High risk status by FISH	1.64 (0.88-2.95)	0.1138	-	-			

Table II. Univariate and Multivariate analysis of factors predicting worse overall survival.

Bolded P-values and HRs represent statistically significant variables (i.e. P < 0.05).

cPCs, circulating plasma cells; LDH, lactate dehydrogenase; PC%, plasma cell percentage; FISH, fluorescent *in-situ* hybridization; HR, Hazard ratio; 95% CI, 95% confidence interval.